

EOS GmbH Electro Optical Systems

CAE Molding Solution Alliance Conference 2014

吳承軒 Jack Wu General Manager – Greater China +86 189 18226929 +886 939 409661 Email: wuch@eos.info

This presentation may contain confidential and/or privileged information. Any unauthorized copying, disclosure or distribution of the material in this document is strictly forbidden.

- Company
- Basic Concepts
- Applications
- New Technology
- China Service Provider

Company

EOS: Technology and Market Leader for Design-Driven, Integrated e-Manufacturing Solutions

- Family-owned, founded in 1989,
- Headquartered in Krailling near Munich, Germany
- Integrated solution provider for Additive Manufacturing
- Solution portfolio: Additive Manufacturing (AM) systems, materials (plastics and metals), software and services
- Complete end-to-end solutions: from part design and data generation to part building and post-processing
- EOS enables competitive advantages for a variety of industries, such as medical, aerospace, tooling, industry, lifestyle products and automotive
- EOS is committed to: Innovation – Quality – Sustainability

EOS: Global Presence

EOS worldwide installed base

1,330 Systems

- ¹/₃ Metal systems
- Polymer systems
- 266 customers with more than 1 system

EOS global footprint

- Customers in 51 countries
- EOS Sales & Service offices in 11 countries, distribution partners in 22 countries
- More than 500 employees worldwide (74% Germany, 26% International)
- Strong patent portfolio: More than 700 active patents in nearly 100 patent families
- R&D Spendings of approx. 15% of Sales

EOS: A Success Story

Innovation Leader

- EOS holds more than 700 active patents in nearly 100 patent families
- "Top 100 the Most Innovative Medium-Sized Companies" award (2006, 2007, 2008, 2012, 2013)
 Top Innovator of the Year 2013

Attractive Employer

- "Bavaria's Best 50" award (2008 and 2011)
- "Great Place to Work" employer award (2008)

EOS: A Global Organisation

- A growing number of local Service units with own Field Service Engineers and depots ensures customer vicinity in key regions
- Application Engineers consult on customer specific application challenges.

Customers from Numerous Industries Rely on EOS Technology

Basic Concepts

Different Types of Technology

- Selective Laser Sintering (SLS)
 - Ex. EOS
- Selective Laser Melting (SLM)
 - Ex. EOS
- Stereo lithography (SLA)
 - Ex. 3D Systems
- Fused Deposition Modeling (FDM)
 - Ex. Stratasys (Objet)

- **OTHERS:**
- Polyjet
- DLP
- LOM
- EBM
- LENS
- Other 3D Printing

Additive manufacturing (AM) also known as 3D printing, is defined by <u>ASTM</u> as the "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to <u>subtractive manufacturing</u> methodologies, such as traditional <u>machining</u>. Synonyms include additive fabrication, additive processes, additive techniques, additive layer manufacturing, layer manufacturing, and freeform fabrication".

自由成型 打破传统加工制造工艺的限制

Direct Part Manufacturing

23 laser-sintered parts produced with FORMIGA P110

Pictures not to scale

Source: HP

Medical – Orthopedic Implants

Batch of finger implants in EOS CobaltChrome MP1

Replacement knee joint in EOS CobaltChrome MP1

Spinal implants in EOS Titanium Ti64

project partners: Stryker Orthopaedics and Protocast

Applications

Automotive

Automotive Prototyping

Bumper incl. fixture

Requirement:

Prototypes which resist the high demands of the Jaguar-profile

Solution:

Laser-sintering on EOSINT P

Result:

- Testparts identical with series parts
- Reduction of development times
- Cost savings
- Higher tool adaption for series production

Project partner:

Laser-sintered prototyp produced in polyamid, painted afterwards, for assembly tests of key components e.g. exhaust pipes

Automotive

Essential material properties

General material data

- Average grain size: 60 μm
- Bulk density:
- Density of laserpart*:

Mechanical properties

- Tensile modulus:
- Tensile strength:
- Elongation at break: 6 ± 3 %
- Ball indent. hardness: 98 N/mm²

Thermal properties

•Melting point: 172

h o d

172 - 180 °C

72 - 180 °C

 $0.59 - 0.62 \text{ g/cm}^3$

1.23 - 1.28 g/cm³

3200 ± 200 N/mm²

48 ± 3 N/mm²

sintered

* EOS-method

Air intake unit Fully functional prototype for development purposes Project partner: Mann + Hummel

Automotive Weight Reduction

27% weight saving

Laser-sintered piston with integrated conformal oil/water cooling channels

Page 23 EOS_Company-Presentation.pptx | EOS | 23

Volkswagen used EOSINT M with StainlessSteel GP1 for one-off production for a concept car

Project summary

Requirement:

 one-off production of a gear shifter knob for a concept car
 complex geometry for eye-catching hollow look
 aesthetically match other metal trim components

 Solution:

 DirectPart[®] on EOSINT M 270 with EOS StainlessSteel GP1

limited edition shifter knobs

great attention at Los Angeles Auto Show 2006

possibility of economic production of customized or

Volkswagen's GX3 concept vehicle

Designer shifter knob in EOS StainlessSteel GP1.

Source: EOS, Volkswagen N.A.

Project partner: Volkswagen N.A.

Result:

e-Manufacturing Solutions

Tooling

EOS Additive Manufacturing Tooling Applications

Smarter design of conformal cooling channels: Cost savings, cycle time reduction, increased performance, scrap rate reduction

Conformal Cooling Channel

Challenge

- Improve cycle time for inserts used to Manufacture air collector
- Improve quality of the inserts
- Previous inserts made in Ampco[®] alloy
- Solution
 - Change in design with the integration of
 - **Conformal cooling channels**
 - Insert built in EOS MaragingSteel MS1,
 - 40 μm layer thickness
- Benefits
 - Improvement of the quality of the inserts
 - Consistent cycle time reduction

Examples of cooling inserts for the automotive industry

DMLS addresses quality and cost per part challenges

Challenge

- Cost reduction for the manufacturing of an automotive plastic product (San, Luran 368 R Crystal Clear, BASF)
- 4 cavities mould, standard solution with cupper alloy inserts
- Optimize cold Runner and nozzle gate process
- Improve quality of the manufactured part

DMLS tools and hybrid design improve part quality and cycle time

Solution

- Design of conformal cooling channels
- Hybrid structure
 - Manufacture the lower part of the mold by conventional process (CNC milling)
 - Upper part built on EOS M 270
- Material: EOS MaragingSteel MS1
- Validation of results with flow, fill and cooling simulation using Moldex3D => decision for final design

Upper picture : temperature distribution analysis. Bottom picture: warpage analysis

Solution

The simulation is performed for the 2 possible solution with Mouldex3D

Simulation compares benefits of conformal

cooling channels with conventional solution

- Temperature distribution
 - The solution with the cupper alloy shows a maximum temperature of 107°C
 - The solution with the cupper alloy shows a maximum temperature of 79°C
- Warpage analysis
 - The conventional solution shows of max 0,25mm
 - The DMLS solution shows a warpage of 0,1

DMLS tools and hybrid design improve part quality and cycle time

Benefits

- Cooling time reduction from 24s to 7,5s =>
 68 % faster cooling time
- Average ejection temperature from 95°C to 68°C
- Temperature gradient from 12°C to 4°C
- Reduction of scrape rate from 60% to 0%
- Improvement of productivity up to 3 parts/min

4 cavities inserts

Proven Advantages

Manufacturing of sustainable plastic product with reduced cost per part

Industry & Automation

Industrial Automation

A conventional handling device was redesigned leveraging the possibilities of laser sintering

OLD design

NEW design

- Weight reduction 86%
- Cost reduction 50%
- Lead time reduced from 21 days to 4 days

New Technology

EOS is focusing on Part Quality, Process Robustness and Industrialization

EOS Technology Focus

EOS Polymer Laser Sintering Systems

FORMIGA P 110: Compact system for RP applications and small series

Usable build size

- Width 200 mm
- Depth 250 mm
- Height 330 mm
 Laser

Laser

- CO₂ laser
- Nominal power 30 W
- Wave length 10.6 μm
- Laser spot size ~0,4 mm
 Layer thickness
- 0.12 mm
- 0.10 mm
- 0.06 mm

EOS P 396: Productive, modular polymer laser sintering system

Usable build size

- Width 340 mm
- Depth 340 mm
- Height 600 mm

Laser

- CO₂ laser
- Nominal power 70 W
- Wave length 10.6 μm
 Laver thickness
- PA 2200: 0.06 mm; 0.10 mm; 0.12 mm; 0.15 mm; 0.18 mm
- All other materials according to compatibility matrix

EOSINT P 760: With greatest built volume for plastic parts

Usable build size

- Width 700 mm
- Depth 380 mm
- Height 580 mm

Laser

- 2 CO₂ lasers
- Total nominal power: 100 W
- Wave length 10.6 μm
 Layer thickness
- PA 2200: 0.06 mm; 0.10 mm; 0.12 mm; 0.15 mm; 0.18 mm
- All other materials according to compatibility matrix

EOSINT P 800: For high-performance plastic components

Usable build size

- Width 700 mm
- Depth 380 mm
- Height 560 mm

Laser

- 2 CO₂ lasers
- Total nominal power: 100 W
- Wave length 10.6 μm

Layer thickness

Standard: 0.12 mm

EOS Polymer Materials

Composition	Trade name	Colour of parts	Main feature	Typical applications
Polyamide 12	PA 2200	white	Multipurpose materialBalanced property profile	Functional parts
	PrimePart [®] PLUS (PA 2221)	natural	 Economic multipurpose material Balanced property profile Certificates available (Biocompatibility, Food contact) 	Functional parts
	PA 2202 black	anthracite black	Balanced property profilePigmented throughoutd	Functional parts in anthracite black colour
Polyamide 12, glass bead filled	PA 3200 GF	whitish	High stiffnessWear resistanceImproved temperature performance	 Stiff housings Parts with requirements on wear and abrasion Parts used under elevated thermal conditions
Polyamide 12, aluminium filled	Alumide®	metallic grey	 Easy post-processing, good machinability High temperature performance Thermal conductivity (limited) High stiffness 	 Applications with metal-like look Parts which need machining Parts with thermal loads
Polyamide 12, carbon fibre reinforced	CarbonMide®	anthracite black	 Extreme strength and stiffness Thermal and electrical conductivity (limited) Best strength/weight-ratio 	Light and stiff functional partsMetal replacement
Polyamide 11	PA 1101	Natural	 Very high ductility / elongation at break 100% from renewable sources (castor/ricinus oil) Acceptable tensile strength 	Functional parts which need impact resistanceParts with functional elements (film hinges)
For special applications				
Polyamide 12	PA 2201	natural	 Multipurpose material Material certificates available (Food contact) 	Medical, food
	PA 2105	light beige	Highest dimensional accuracyHigh surface quality and detail resolution	• Dental
Polyamide 12, flame retardant	PA 2210 FR	white	Economic flame-retardant materialHalogen-free	Aerospace Electric & Electronic
	PrimePart [®] FR (PA 2241 FR)	white	Economic flame-retardant materialMaterial certificates available (flammability)	Aerospace
TPE-A Polyetheramide- Block-Copolymer	PrimePart [®] ST (PEBA 2301)	white	 Rubber-like flexibility (Shore D ≈ 35) No infiltration necessary 	Damping devices, bumpers / cushions, gaskets / gasket seals, shoe sole elements
Polystyrene	PrimeCast [®] 101	grey	High dimensional accuracyLow residual ash-content	Patterns for investment castingMaster patterns for vacuum casting
Polyaryletherketone	EOS PEEK HP3	beige-brown	 High performance material Excellent temperature performance, strength, stiffness and chemical resistance Excellent wear resistance. Inherently flame retardant Biocompatibility and sterilizability 	 Metal replacement Aerospace Automotive and motorsports. Electric & Electronic Medical Industrial

EOS Direct Metal Laser Sintering (DMLS) Systems

EOSINT M 280: Leading-edge DMLS system for the Additive Manufacturing of metal parts

Build size

- Width 250 mm
- Depth 250 mm
- Height 320 mm

Laser

- Yb-fibre laser
- 200 W or 400 W

Technical data

- Precision optics: F-theta-lens, high-speed scanner
- Scan speed: up to 7.0 m/s

EOSINT M 270 Dental: Highperformance DMLS for production of dental copings and bridges

Build size

- Width 250 mm
- Depth 250 mm
- Height 215 mm

Laser

- Yb-fibre laser
- 200 W

Technical data

- Precision optics: F-theta-lens, high-speed scanner
- Scan speed: up to 7.0 m/s

EOS M 400: System for the Industrial Production of High-Quality Large Metal Parts

Build size

- Width 400 mm
- Depth 400 mm
- Height 400 mm

Laser

- Yb-fibre laser
- 1,000 W

Technical data

- Precision optics: F-theta-lens
- Scan speed: up to 7.0 m/s

EOS M 400 en V1.0 | EOS | 42

EOS M 400

System Features

Build Chamber

- **400x400x400mm** (including build platform) with optimized flow
- Smooth surfaces for easy cleaning
- Single 1 kW laser for higher buildrates

Material Dosing

- Feeding from above with inert gas injection to prevent agglomeration
- Recoating from both sides for reduction of nonproductive time

Recirculating Filter System

- Automated removal of condensate cake
- Longer filter lifetime for lower operating costs

EOS M 400

NEW User Interface on system enables....

Intuitive

- Simplified user interface with touch screen, developed with usability experts based on customer input
- Automatic creation of process conditions. Remaining time until job start is calculated
- Customizable dashboard for full transparency of system conditions

Efficiency

- Task-based layout on touch screen for faster operation and bundling of associated steps
- Wizard guidance to support operator's learning curve
- Automated sequence of tasks possible

Stability

 Reduction of risk of wrong operation in production environment

... Improved Usability – Intuitive Interface

Depending on the Application, EOS will offer a Single or Multi-Field Manufacturing Solution

NEW EOSTATE PowderBed

Recoating & Exposure monitoring

Taking Fotos

- Camera integrated in ceiling of process chamber in the immediate vicinity of the optics (off-axis)
- Illumination has been optimized with regard to image recognition
- 2 pictures of entire build area per layer, one after exposure and one after recoating
- Less is more, e.g. 1.3 Megapixel standard industrial camera, less data for image recognition in realtime and realtime calculation

Viewing Fotos

- Touchscreen: most recently taken image + flip through past layers of current job
- EOSTATE plug-in on desktop PC: all images + flip through layers of selected job + flipbook (AVI export)
- Recoater speed

Step I: Flip-Book of a good job

Peek into the Lab – EOSTATE MeltPool*

Principle of operation

- Capturing light emissions from DMLS process with photodiode-based sensors
 - a) "On-Axis" configuration (= through the scanner)
 - b) "Off-Axis" configuration (= diode inside process chamber)

- Sensing light intensity and signal dynamics, which are among the most relevant indicators for process behavior
- Correlation of sensor data with scanner position and laser power signal

Deepening know how about correlations of monitoring data, process characteristics and part quality

Current Development

- Further development of algorithms for automated data analysis and visualization
- Implementation in user-friendly software

Cooperation with experienced industry partner

partner's expertise in industrial monitoring

leveraging synergies of EOS process know-how and

Mapping of data of a tensile bar

EOS Metal Materials

Material Group	Trade name	Material type	Typical applications
Maraging Steel	EOS MaragingSteel MS1	18 Mar 300 / 1.2709	Injection moulding series tooling; engineering parts
Staiplass Staal	EOS StainlessSteel GP1	Stainless steel 17-4 / 1.4542	Functional prototypes and series parts; engineering and medical
Stamess Steel	EOS StainlessSteel PH1	Hardenable stainless 15-5 / 1.4540	Functional prototypes and series parts; engineering and medical
	EOS NickelAlloy IN718	Inconel™ 718, UNS N07718, AMS 5662, W.Nr 2.4668 etc.	Functional prototypes and series parts; high temperature turbine parts etc.
Nickel Alloy	EOS NickelAlloy IN625	Inconel™ 625, UNS N06625, AMS 5666F, W.Nr 2.4856 etc.	Functional prototypes and series parts; high temperature turbine parts etc.
	EOS NickelAlloy HX	UNS N06002	Parts with severe thermal conditions and high risk of oxidation, e.g. combustion chambers, burner components, fans, roller hearths and support members in industrial furnaces
Cabalt Chrome	EOS CobaltChrome MP1	CoCrMo superalloy, UNS R31538, ASTM F75 etc.	Functional prototypes and series parts; engineering, medical, dental
Cobait Chrome	EOS CobaltChrome SP2	CoCrMo superalloy	Dental restorations (series production)
Titanium	EOS Titanium Ti64	Ti6Al4V light alloy	Functional prototypes and series parts; aerospace, motor sport etc.
Aluminium	EOS Aluminium AlSi10Mg	AlSi10Mg light alloy	Functional prototypes and series parts; engineering, automotive etc.

EOS Service Provider Near YOU!

Business Model

Thank you for your attention!

This presentation may contain confidential and/or privileged information. Any unauthorized copying, disclosure or distribution of the material in this document is strictly forbidden.