

最新注塑压缩成型技术之理论与实务应用)

黃招財 (CT Huang) 技術研發部 協理 科盛科技股份有限公司

CoreTech System Co., Ltd www.moldex3D.com

Content

- > Introduction
- > The challenges for using ICM
- > Real Case Studies
- > How to setup the key steps for Moldex3D to simulate ICM process
- > Conclusion
- > Q and A

Applications of Conventional Injection Molding (CIM)

Overview of CIM

General Problems and Challenges

Warpage

Flash

Overview of Conventional Injection Molding (CIM)

ICM Process Cycle

Moldex3D

Close mould down to the compression gap

Inject and fill cavity 80 – 95% (equivalent to 100% or more of the ultimate volume)

Apply hold pressure, cool, open mold, and eject part

Sequential or simultaneous compression by clamping the mould

Benefits of ICM for Parts

Benefits of ICM for Process

ICM Applications

Moldex3D

- > Application Fields
 - In-Mold decoration parts

- Optical parts

- Finely textured surfaces

ICM Applications

Moldex3D

- > Application Fields
 - Automobile parts

- 3C products (PDA cover, cell phone cover, Notebook

- Others(Fuel cell bipolar plate, SD card etc.)

Challenges for using ICM

Extra costs for the Flash machine and mould **Problem Disadvantages** Complicated Parts with great depth process condition in the injection direction control are not suitable for ICM compression time, compression force, compression speed, and compression distance

Key Issues for ICM

- > Issues from CIM to ICM
 - Very complicated process parameter control,
 - Smaller process window,
 - The injection pressure, temperature, clamping force and their histories become very different,
 - The physical mechanism and the detailed internal information cannot be fully understood by the experiments,
 - Different materials have different viscosity, compressibility etc.

Case Study (1): light guide plate

Two different geometry designs and their effects on process and product quality

Two Type LGP Model

Moldex3D

> Wedge LGP

- 176mm × 99mm rectangular with wedge-shape, which the thickness varies from 1.5mm at one end to 0.5mm at the other end
- > Flat LGP
 - 176mm × 99mm rectangular with constant thickness 1.0mm

Material and Process Condition Information

Project Settings Filling/Pac	king Settings Compression Cooling Settings Summary
	Compression Settings Compression gap : 0.1 mm Compression time : 5.00595 sec
	Start compressed by Volume filled at 95 % Delay time : 0 sec
	Compression Speed Setting Maximum compression speed : 1 mm/sec Compression Speed Profile
	Compression Force Setting Maximum compression force : 999 tf Compression Force Profile

roject Settings	Filling/Pac	king Settings Comp	ression Cooling S	Settings Summary	
		Filling setting Filling time : 0.1 <u>F</u> low rate pro <u>Injection pressur</u> VP switch-over By volume(%) filled Packing setting ♥ Nozzle is Shut of Packing time : 5 Packing pressure r <u>Packing pressure</u>	1895 sec ofile (1) re profile (1) as ff efer to end of filling re profile (1)	100 %	
	\sum	Melt Temperature Mold Temperature	260 90	oC oC	
				Advanced S	etting

Flat LGP with CIM

> During the packing stage of CIM, the pressure decreases smoothly as packing starts

Wedge LGP with CIM

> During the packing stage of CIM, the pressure decreases smoothly as packing starts

Wedge LGP with ICM

Flat LGP with ICM

Wedge LGP

> ICM (46~55 MPa) process has more uniform pressure distribution than CIM (35~71 MPa)

Conventional injection molding (CIM)

Injection compression molding (ICM)

Moldex3D

Flat LGP

Moldex3D

ICM (48~50 MPa) process has more uniform pressure distribution than CIM (12~53 MPa)

Moldex3D

>

Conventional injection molding (CIM)

Injection compression molding (ICM)

Wedge LGP - Part Shrinkage

> ICM (-2.3 ~ -0.5 %) has smaller shrinkage variation than CIM (-3.4 ~ -0.3 %) (more uniform pressure distribution)

Conventional injection molding (CIM)

Injection compression molding (ICM)

Flat LGP - Part Shrinkage

 ICM (-2.0 ~ -1.6 %) has smaller shrinkage variation than CIM (-2.1 ~ 0.9 %) (more uniform pressure distribution)

Conventional injection molding (CIM)

Injection compression molding (ICM)

How to Setup Key Steps for Moldex3D to Simulate ICM processes

Numerical Theory-Basic Governing Equation

> Full 3D theory

 (∂T)

> Mass Conservation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \mathbf{v} \right) = 0$$

> Momentum Conservation

 $\frac{\partial}{\partial t}(\rho u) + \nabla \cdot (\rho u u - \tau) = -\nabla p + \rho g$

> Moving Grid Approach

Numerical Theory-Constitutive Equations

Moldex3D

- Modified-Cross model

 $\tau = \eta (T, \dot{\gamma}) (\nabla \mathbf{u} + \nabla \mathbf{u}^T)$

$$\etaig(T,\dot{\gamma}ig) \!=\! rac{\eta_o(T)}{1\!+\!ig(\eta_o\dot{\gamma}/ au^*ig)^{\!\!1-n}}$$

- > Viscoelastic fluid
 - Constitutive equation (ex White Metzner Model)

$$\tau + \lambda \left(\frac{\partial \tau}{\partial t} + \mathbf{V} \cdot \nabla \tau - \nabla \mathbf{V}^{\mathrm{T}} \cdot \tau - \tau \cdot \nabla \mathbf{V} \right) = \eta \left(\nabla \mathbf{V} + \nabla \mathbf{V}^{\mathrm{T}} \right)$$

Add elastic characteristic term

Compression Surface Setting in Moldex3D-Mesh

Moldex3D

Compression region setting in Moldex3D-Mesh

Layers - All Layers	×
ŮЮ×▲▼∢∇≫?	,
Name	
Default	🤉 பி 🔳
SCAPS	<u>ः</u> त 🗖
BC 🗸	
MeshLayer	
RH\$6000*0, 6.000, 1.000,10	
RH\$3000-6000*0, 3.000, 1.00	
RH\$6000-3000*0, 6.000, 1.00	
EMS	
EMS\$	
SRAHS	
MeshFreeEdge	
SRALS	
NJS NMC	
ED¢Matorial1	• ۲ –
SMARe	•
UpmatchedSurface	•
or infatcheu Sulface	• LI 🗖
•	- P

Process Parameter Setting in Moldex3D-Project

Moldex3D

Process settings in Moldex3D-Project

Moldex3D Process Wizard	
Project Settings Filling/Pac	king Settings Compression Cooling Settings Summary
	Filling setting Filling time : 0.1 sec Flow rate profile (1) Injection pressure profile (1) VP switch-over By volume(%) filled as 98 %
	Packing setting Nozzle is Shut off Packing time : 5 sec Packing pressure refers to end of filling pressure Packing pressure profile (1)
	Melt Temperature 235 oC Mold Temperature 50 oC
	Advanced Setting
Capture Option	Help Save Cancel

Nozzle can be shut off before the beginning of compression

Injection Compression Simulation - Key points and features

- > The compression gap, compression speed, delay time and other settings for ICM are all available in process wizard.
- > Support injection and compression processing at the same time
- > Support new meshing method: compression gap solid mesh
- > Support animation of compression action on melt
- > Support to calculate flow residual stress and thermallyinduced stress.
- > Support connection with optical analysis.
- > Support multiple-component parts.
- > Support multiple-time output.

What we can conclude?

Conclusions

- > We have introduced Injection compression and its current industrial applications.
- > We have pointed out the issues in design and development for injection compression products.
- > We have proposed a useful tool: An innovative 3D injection compression simulation technology-Moldex3D.
- > We have learned the benefits from using Moldex3D on practical studies.
- > Moldex3D can help us to reduce real mold trials and product development time to save money and time.

Thank you for your attention!

CoreTech System Co., Ltd www.moldex3D.com